Overview
Professor Chen's Group develops and applies single-molecule imaging and manipulation approaches to interrogate and understand the function and dynamics of nanomaterials and biomacromolecules, with the goal of acquiring fundamental chemical knowledge for developing better strategies for energy conversion as well as for curing and preventing diseases.
SELECTED HONORS
- 2024 ISE-Elsevier Prize in Experimental Electrochemistry
- 2024 Member, American Academy of Arts and Sciences
- 2024 MilliporeSigma Lecture, St. Louis University
- 2023 Chemistry Honors Program Lecture, Kent State University
- 2019 Chemical Pioneer Award
- 2019 Brian Bent Lecture, Columbia University
- 2018 Fellow, American Association for the Advancement of Science
- 2018 Bau Family Award in Inorganic Chemistry
- 2018 Sessler Distinguished Alumni Lecture, Stanford University
- 2017 Visiting Professor in the Debye Chair, Utrecht University
- 2017 Catalysis Forum Lecture, DICP, Chinese Academy of Sciences
- 2016 Excellence in Catalysis Award, Catalysis Society of Metro New York
- 2014 Early-Career Award in Experimental Physical Chemistry, ACS PHYS Division
- 2014 Coblentz Award
- 2013 Honorable Lecture, Applied Chemistry Lecture Series, CIAC, Chinese Academy of Sciences
- 2013 Lester S. Andrews Lecture, Mississippi State University
- 2011 CAPA Distinguished Junior Faculty Award
- 2010 Paul D. Saltman Memorial Award
- 2009 Alfred P. Sloan Research Fellow
- 2007 NSF Career Award
- 2005 Camille and Henry Dreyfus New Faculty Award
Research Focus
Our research focuses on developing and applying single-molecule techniques to understand molecular processes of physical, bioinorganic, and biophysical in nature. Compared with traditional ensemble measurements, single-molecule approaches remove ensemble averaging, so that transient intermediates and heterogeneous subpopulations can be captured and characterized in both spatial and temporal dimensions and under realistic conditions. Current projects are divided into three main areas:
- Single-molecule catalysis. Here we study the catalytic, electrocatalytic, and photoelectrocatalytic properties of nanoscale materials and small-molecule catalysts at the single-turnover temporal resolution and nanometer spatial resolution. The goal here is to acquire chemical knowledge for developing better catalysts for chemical processing, fuel generation, and (solar) energy conversion.
- Single-molecule bioinorganic/biophysical chemistry. Here we study the dynamics and mechanisms of the protein machineries involved in cellular metal regulation, trafficking, and efflux both in vitro and in living cells, as well as of electron transport pathways related to energy conversion and biomass synthesis in living cells. The goal here is to acquire chemical and biological knowledge for developing strategies to cure and prevent diseases and for sustainable energy production/storage.
- Method development. In pursuit of our scientific interests, we also develop new methods and extend/improve existing methods to enable new experiments, especially single-molecule, single-particle, and single-cell level measurements.
Publications
See complete publication list at Group Website.
- L. Xu,† R. Ye,† M. Mavrikakis,* P. Chen* "Molecular-scale insights into cooperativity switching of xTAB adsorption on gold nanoparticles" ACS Cent. Sci. 2024, 10, 65-76.
- R. Ye,† X. Sun,† X. Mao,† F. Alfonso, S. Baral, C. Liu, G. Coates, P. Chen* "Optical sequencing of single synthetic polymers" Nature Chem. 2024, 16, 210-217.
- B. Fu,† X. Mao,† Y. Park, Z. Zhao, T. Yan, W. Jung, D. H. Francis, W. Li, B. Pian, F. Salimijazi, M. Suri, T. Hanrath, B. Barstow, P. Chen* "Single-cell multimodal imaging uncovers energy conversion pathways in biohybrids" Nature Chem. 2023, 15, 1400-1407.
- S. Baral,† C. Liu,†,* X. Mao, G. W. Coates, P. Chen* "Tuning single polymer growth via hydrogen bonding in conformational entanglements" ACS Cent. Sci. 2022, 8, 1116-1124.
- X. Mao, P. Chen* "Inter-facet junction effects on particulate photoelectrodes" Nature Mater. 2022, 21, 331-337.
- R. Ye,† M. Zhao,† X. Mao, Z. Wang, D. A. Garzón, H. Pu, Z. Zhao, P. Chen* "Nanoscale cooperative adsorption for materials control" Nature Commun. 2021, 12, 4287.
- S. Baral, C. Liu, U. K. Chakraborty, K. Kubo, X. Mao, G. W. Coates, P. Chen* "Single-chain polymerization dynamics and conformational mechanics of conjugated polymers" Chem 2021, 7, 2175-2189.
- B. Fu,† K. Sengupta,† L. A. Genova,† A. G. Santiago, W. Jung, L. Krzeminski, U. K. Chakraborty, W. Zhang, P. Chen* "Metal-induced sensor mobilization turns on affinity to activate regulator for metal detoxification in live bacteria" Proc. Natl. Acad. Sci. U.S.A. 2020, 117, 13248-13255.
- L. A. Genova,† M. F. Roberts,† Y.-C. Wong, C. E. Harper, A. G. Santiago, B. Fu, A. Srivastava, W. Jung, L. M. Wang, L. Krzeminski, X. Mao, X. Sun, C.-Y. Hui, P. Chen,* C. J. Hernandez* "Mechanical stress compromises multicomponent efflux complexes in bacteria" Proc. Natl. Acad. Sci. U.S.A. 2019, 116, 25462-25467.
- X. Mao, C. Liu, M. Hesari, N. Zou, P. Chen* "Super-resolution imaging of nonfluorescent reactions via competition" Nature Chem. 2019, 11, 687-694.
- N. Zou,† X. Zhou,† G. Chen,† N. M. Andoy, W. Jung, G. Liu, P. Chen* "Cooperative communication within and between single nanocatalysts" Nature Chem. 2018, 10, 607-614.
- C. Liu,† K. Kubo,† E. Wang,† K.-S. Han, F. Yang, G. Chen, F. A. Escobedo,* G. W. Coates,* P. Chen* "Single polymer growth dynamics" Science 2017, 358, 353-355.
- J. B. Sambur, T.-Y. Chen, E. Choudhary, G. Chen, E. J. Nissen, E. M. Thomas, N. Zou, P. Chen* "Sub-particle reaction and photocurrent mapping to optimize catalyst-modified photoanodes" Nature 2016, 530, 77-80.
In the news
- A touch of gold has extra reach in degrading micropollutants
- Chen, Wolfner, Ryan elected to arts and sciences academy
- Cornell chemists image basic blocks of synthetic polymers
- Imaging shows microbes turning CO2 into bioplastic
- 3D semiconductor particles offer 2D properties
- Small molecule plays outsize role in controlling nanoparticle
- Magnetic tweezers reveal polymers’ hidden properties
- Researchers track how bacteria purge toxic metals
- Physical forces affect bacteria’s toxin resistance, study finds
- New imaging method aids in water decontamination
- A first: Cornell researchers quantify photocurrent loss in particle interface
- $10.75M grant aids next-gen fuel cell development
- Understanding nanocatalysts' 'talk' could better inform design
- Inaugural Presidential Postdoctoral Fellows selected
- First-ever visualization of enhanced catalytic activity reported
- Innovating with Single-Molecule Imaging
- E. coli bacteria's defense secret revealed
CHEM Courses - Fall 2024
- CHEM 4430 : Introduction to Chemical Biology Research
- CHEM 4770 : Introduction to Physical Chemistry Research
- CHEM 6860 : Physical Chemistry of Proteins